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Abstract 

In this paper we provide a method of explicitly determining, for a given finite group G and 
finitely generated G-module U trivial under the action of G, a representative for each element 
(2-cocycle class) in HZ(G, U). These cocycles are naturally displayed as IGI x IG[ matrices. An 
example of calculating cocyclic matrices using the method is given. 

1991 Math. Subj. Class.. Primary 20J06; Secondary 05B20 

1. Introduction 

Let G be a finite group and U a G-module. For each n > 0 one may define the 

familiar nth cohomology group Hn(G, U) of  G with coefficients in U, the elements 

of  which are n-cocycle classes. The problem of  explicitly determining a full set of  

representative n-cocycles for given G and U does not appear to have been traditionally 

studied by cohomologists, although the need for such information has arisen in several 

areas. One example involves an application in combinatorial design theory. A 2-cocycle 

is naturally displayed as a cocyclic matrix (associated with ~b, developed over G); 

that is, a square matrix whose rows and columns are indexed by the elements of  

G (under some fixed ordering) and whose entry in position (g,h)  is ~b(g,h ). This 

notion was used in recent work by Horadam and de Launey [3] as a modification 

of  group development o f  designs, in part as a new way of  generating designs. It 

is also apparent that cocyclic matrices, associated with cocycles with coefficients in 

Y2 - { - 1 ,  1 }, account for large classes of  so-called Hadamard matrices, and may 
consequently provide a uniform approach to the famous Hadamard conjecture. In this 
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context, methods for calculating cocyclic matrices are required, thus motivating the 

main problem considered in this paper. (Note that our focus is entirely on construction 
of representative cocycles. The construction of 2-coboundaries is straightforward from 

the definition, and best relegated to a computer, given the number of  such objects 
involved. For example, when U = 22, the number of  2-coboundaries ]B2(G, U)I grows 

as 2 IC1-~-1, where r is the rank of the Sylow 2-subgroup of G/G:.) 
Our method is based on an explicit version of the well-known Universal Coefficient 

Theorem, which provides a decomposition of the second cohomology group into the 

direct sum of two summands. The summands may be calculated as the images of  certain 
embeddings, called inflation and transgression. These homomorphisms arise in exact 

sequences derived from the Lyndon-Hochschild-Serre spectral sequence. We quote 

the relevant results in this area in Section 2 of  the paper. The specific Universal 
Coefficient Theorem decomposition is then discussed in Section 3. In Section 4, we 
examine symmetry properties of  cocycles produced by the method. Finally, in Section 5 

we provide an example of calculating cocyclic matrices. 
Familiarity with standard concepts and notation in the cohomology theory of groups, 

as may be found in Ch. V1 of [2], will be assumed. Throughout, we consider U as 
a left G-module, and as a multiplicative abelian group unless stated otherwise. For 

"2-cocycles" it is often convenient to write "cocycles". Cohomology class is denoted 

[ - ] .  All cocycles considered are normalised. 

2. Inflation, restriction and transgression 

References for the material in this section are Section 10 of [7] and pp. 38-52 of 

[5]. 
Let N be a normal subgroup of G and denote by U N the G-submodule of  N-fixed 

points of  U. For each 0 C Zn(G/N, UI':), define in(0 ~ Zn(G, U) by 

inf~b(gl . . . . .  g ,)  = ~(gjN,... ,griN). 

Setting in([0] = [inf~b] defines inflation from H"(G/N, U N) to H"(G, U N). Restriction 
is the homomorphism res : Hn(G, U) ---, Hn(N, U) induced by restricting to N the 

domain of definition of n-cocycles. 
Inflation on second cohomology has a felicitous description in terms of cocyclic ma- 

trices. Choose ~ C Z2(G/N, Uv),  label the elements of  N as Xl = 1,x2 . . . . .  xs and choose 
a set of  representatives gl = 1, g2,' ' . ,gr for the cosets GIN. Denote by Minf0 and MO 
the cocyclic matrices associated with in( ~ and ~, where rows and columns are indexed 
1, g2,..., gr,x2,..., grx2,... ,xs . . . .  , g~x, and N, g2N,..., g,.N, respectively. Clearly, 

where ® denotes Kronecker product of matrices and ]~ is the s × s all ls matrix. 
Informally, inflation is just "tensoring up". 
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Suppose for the rest of  this section that N is a central subgroup of G and G acts 
trivially on U. Transgression z • Horn(N, U) --+ HZ(G/N, U) is defined as follows. By 

assumption, 

proj. 
1 - +  X J - ~  G ~ G/N ---+ l 

is a central extension of N by G/N, and so we obtain in the usual way an associated 

cocycle kt~ E ZZ(G/N,N) defined via a normalised transversal function ~r • G/N ~ G. 

The assignment 

is a homomorphism from Hom(N, U) into H 2 (G/N, U). Of course, each p E Z2(G/N,  N) 
gives rise to a homomorphism ~b ~ [~bop] from Horn(N, U) to H2(G/N, U). However, 

unlike z, such a homomorphism does not necessarily possess the same kernel and im- 
0,1 age as the Lyndon-Hochschild-Serre spectral sequence differential d 2 . This property 

allows us to write z = d °'1 in the place of d 0'1 in the following "fundamental" five 

term exact sequence (see [7, p. 354, Eq. (10.6); and 5, p. 45, Theorem 2.5]): 

0 ~ Hom(G/N, U) inf Horn(G, U) ZSL Horn(N, U) 

H2(G/N, U) inf H2(G ' U). (1) 

The next result is a useful consequence of (1). Write ,q- I h-  I gh = [g, h] for g, h c G. 

Lemma 2.1. Suppose that G,N, U are as above and also that N <_ G'. Then z " 
Hom(N, U) --+ H2(G/N, U) is injective. 

Proof. For any 0 ~ Horn(G, U) and g,h E G, 0([g, h]) = [0(g), 0(h)] = 1. Hence res " 
Horn(G, U)--+ Horn(N, U) is zero, implying the result by (1). [] 

3. The Universal Coefficient Theorem and calculation of cocyclic matrices 

In this section, we draw on several standard ideas, which are collected most conve- 
niently in [6] (mainly Section 2.1 of that book). 

Throughout, G is finite and U a trivial G-module. Denote the Schur multiplicator 
of  G by H2(G). If  G = A is abelian then Ext(A, U) denotes the subgroup of H2(A, U) 
consisting of the 2-cocycle classes [~] containing a symmetric cocycle tp, meaning that 

tp(g,h) = ~(h,g) for all g,h C G. For the next result, see [2], p. 179, Theorem 3.3. 

Theorem 3.1 (Universal Coefficient Theorem). For G and U as above, 

H2(G, U) ~- Ext(G/G', U) 0 Hom(H2(G), U). (2) 

Our immediate objective is to obtain the decomposition (2) as an internal direct 
sum. To accomplish this, at least in the case that U is finitely generated, we exhibit 
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embeddings of Ext(G/G', U) and Horn(He(G), U) in H2(G, U) whose images are 
complementary. 

There is an embedding of Ext(G/G', U) in H2(G, U), arising as the restriction to 
Ext(G/G', U) of the inflation homomorphism on H2(G/G ', U). Inflation maps sym- 
metric cocycles to symmetric cocycles, so that, in particular, representative cocyclic 
matrices for the elements of this embedding's image may be chosen as symmetric 
matrices. The fact that inflation is injective on Ext(G/G', U) is a consequence of the 
following technical proposition (this is formulated in a general context which allows 
the crucial Theorem 3.5 also to be treated as a special case). 

Proposition 3.2. Let K be a group acting trivially on U, and N a normal subgroup 
of K such that K/N ~ G and N < K ~. Denote by infl the restriction to Ext(G/G', U) 
of inflation 

H2(G/G ', U) ~ H2(G, U), 

and by inf2 inflation 

H2(G, U) --~ H2(K, U). 

Then the composite inf2 infi is injective. 

Proof. Choose [~] E Ext(G/G I, U) such that inf2 infl [~] = 0. Since GIG' is naturally 
isomorphic to K/K', this implies that there is [~] E Ext(K/K', U) corresponding to [~] 
and a normalised 1-cochain q5 : K --~ U such that 

~/(xK', yK') = ~(x)fg(y)qb(xy)-1 (3) 

for all x, y E K. Hence, 

c~(xt ) = ffg(x )ffg( t ) (4) 

for all t E K', implying that 

4~(xy) = ¢(yx)c~([x, y]). 

But symmetry of ~ and (3) force (9(xy) =- c~(yx), so that ~b([x, y]) = 1. By (4), qS[K, is 
certainly a homomorphism, hence the identity homomorphism, and the normalised map 
¢p from K/K' to U defined by ~o(xK ~) = qS(x) is well-defined. Then ~ E B2(K/K ~, U) 
by (3), verifying the proposition. [] 

From now on, unless otherwise stated, inf will denote the restriction to Ext(G/G', U) 
of the inflation homomorphism on H2(G/G ', U). 

Corollary 3.3. inf is injective. 

Proof. Take K = G and N = l in Proposition 3.2. [] 
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We complete our description of inf with an outline of a procedure for determining 
a full set of representative cocyclic matrices for the elements of Ext(G/G ~, U). Write 
G/G' in primary invariant form GIG t -~ I-Ii 7/p,.,, where the ei range over some finite 
set of positive integers and the Pi are primes. Since the bifunctor Ext is additive, 

Ext(G/G r, U) ~ (~Ext(7/p,  U) 
i 

By selecting a representative cocyclic matrix for an element of each Ext(7/p,.,, U), and 
forming the Kronecker product of these matrices, we obtain a representative cocyclic 
matrix for an element of Ext(G/G ~, U). The set of all such Kronecker products is 
a full set of representative cocyclic matrices for the elements of Ext(G/G~,U). A 
representative cocyclic matrix for each element of Ext(7/p~,, U) is obtained by first 

noting that the latter group is precisely H2(7/p~, U) - a central extension of an abelian 
group by a cyclic group is always abelian. The eohomology of finite cyclic groups 
is very well-known; in particular, there is an isomorphism H2(7/n, U) ~- U/U ~ which 
may be explicitly defined (see [5, p. 52, Theorem 3.1]). For example, a representative 
cocyclic matrix for the single nonzero element of HZ(7/2n,7/2) ~ 772 is the "back 
negacyclic" matrix of side 2n, whose ith row is 

1 1 . . .  1 - 1  - 1  . . .  - 1 ,  

where the first occurrence of - 1  is in column 2n - i + 2. 
The description of the embedding of Hom(Hz(G), U) in H2(G, U) makes use of 

Hopf's formula for H2(G). As is well-known, for any choice of presentation G ~= F/R, 
where F is free of finite rank, the finitely generated abelian group R/[R,F] splits 
over its torsion subgroup R N F'/[R,F] ~ H2(G). A complement S/[R,F] of R n F~. / 
[R,F] in R/[R,F] (here called a Schur complement) is not necessarily unique, and its 
isomorphism type is dependent on the choice of presentation. Specifically, S/[R,F] is 
free abelian of the same rank as F. Now note that 

1 ~ R/S Z+ F/S -L FIR ---+ 1, ( 5 )  

where t is inclusion and rc the composite of projection and a natural isomorphism, is 
a central extension of R/S ~ H2(G) by FIR ~ G. As in Section 2, we may define 
transgression zs • Hom(R/S, U) --. H2(F/R, U). 

P r o p o s i t i o n  3.4. zs is injective. 

P r o o f .  Since R/S <_FR/S=FIS/S=(F/S) I, the result is a consequence of Lemma 2.1.  
[] 

Next, we show that the images of inflation and transgression are complementary. 

Theorem 3.5. Choose F,R and S as above. Then, identifyin.q G with F/R, 

im inf n im rs = {0}. 
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Proof. Since R/S < (F/S)', upon setting K : F/S and N = R/S the hypotheses of 
Proposition 3.2 are satisfied. In the present terms infl is inf, and by (1), inf2 has kernel 

im vs. The conclusion follows. [] 

This leads directly to the main result of  the section (cf. [6, pp. 25-26, Theorem 

2.1.19]). 

Theorem 3.6. Choose F,R and S as above, and let U be .finitely generated Then, 
identifying G with FIR and H2(G) with R/S, 

HZ(G, U) = im inf ® im Zs. 

Proof. Since HZ(G, U) is finite in this situation, the result follows immediately from 

Corollary 3.3, Proposition 3.4, and Theorems 3.1 and 3.5. [2 

The theory in Section 4 of [1] and Sections 10-12 of [3] overlaps the theory pre- 
sented in this section (as may be seen after choice of  the standard presentation for G 

above). Theorem 3.6 supplies a general method for calculating a full set of  representa- 
tive cocycles for the elements of  H2(G, U) when G is not necessarily abelian, lacking 

in [1,3]. 
To close this section, we note that any covering group of G and correspondingly 

defined transgression can take the role of F/S and Vs, respectively, in Theorem 3.6. 
But this is of  little import, since any covering group is isomorphic to F/S for some 

choice of S ([6, p. 50, Theorem 2.4.6 (iv) (b)]). 

4. Symmetry of cocyclic matrices 

Calculation of representative cocyclic matrices associated with elements of  im inf is 
canonical in the sense that once a presentation of G has been fixed, it depends only 

on the primary invariant decomposition of G/G I, which is unique up to reordering of 
factors. However, calculation of a complement of  im inf in H2(G, U), as the image of 
transgression, is not canonical it depends on the choice of  a Schur complement. This 
is a potential source of difficulty in comparison of cocyclic matrices, or in using the 
decomposition of Theorem 3.6 to recognise whether a given matrix with entries in U 
is cocyclic over some group G. It would be useful, therefore, to have a characterisation 
of the elements of im inf in terms of cocycle classes. A (conditional) characterisation 
of that sort will be presented in this section. A characterisation in terms of equivalence 
classes of  central extensions is given in [6, p. 24, Lemma 2.1.17], but is difficult to 

translate into terms of cocycles. 
An element ~b of Z2(G, U) will be called almost symmetric if ~b(g,h) = ~p(h,g) 

whenever [g, h] = 1. Note that every coboundary is almost symmetric. A presentation 

1 ---+ R ~ F ~ FIR --~ 1 (6) 
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of G -~ FIR will be said to satisfy (P) if R N F~/[R,F] is generated by elements in the 
set of generators 

{[ f  l, f 2][R,F] I f i E F} 

of F/[R, F]. After calculating H2(G) in Hopf's form, inspection would hopefully reveal 
whether the chosen presentation of G satisfies (P). 

Lemma 4.1. Suppose G has a presentation (6) satisfying (P), and H 2 ( G ) ¢  {0}. 
Choose a Schur complement S/[R,F]. Then for all nonzero [0] c i m  rs, ~ is not 
almost symmetric. 

Proof. Applying the natural isomorphism of R A FI/[R,F] onto R/S, we see that R/S 
is generated by elements of the form [ f l , f2 ]S .  

Choose a normalised transversal function v : FIR --+ F for the presentation (6). Then 
a : f R  H v(fR)S defines a normalised transversal function a : FIR --+ F/S for (5) and 
we have tt c Z2(F/R,R/S) defined by 

#(.fR, gR) = v(fR)v(gR)v(f gR)-l S. 

Suppose q5 E Hom(R/S, U) is nontrivial on at least one generator [ f~ l , f~ l ]S ,  say, of 
R/S. We will assume that q5 o/t  is almost symmetric and derive a contradiction. 

Since f i r  and f2R commute, by assumption we have 

~(v( f  lR)v(f 2R)v(f l f  2R)-lS) = qb(v(f 2R)v(f lR)v(f 2 f  lR) IS), 

and thus ~(v( f lR)v( f2R)v( f lR) - lv ( f2R)- IS)= 1. But 

v(f lR)v(f2R)v(f lR ) lv(f2R)-lS = f l f 2 f ~ l  f ~ l S  

by centrality of R/S in F/S and so qb([f~ l, f~-I ]S) = 1, the required contradiction. [] 

Corollary 4.2. Suppose that G has a presentation (6) satisj)'ing (P). Then 

im inf = {[~9] E HZ(G, U) ] t~ is almost symmetric}. 

Proof. One direction of containment is obvious. The other direction follows from 
Theorem 3.6 and Lemma 4.1. [] 

So if G has a presentation satisfying (P), each cocyclic matrix over G decom- 
poses, not necessarily uniquely, as the coordinatewise product of a symmetric (inflation) 
matrix, an almost symmetric (coboundary) matrix and an asymmetric (transgression) 
matrix. We ask whether the dependence on (P) in Corollary 4.2 may be removed: is 
it true in general that each symmetric element of Z2(G, U) lies in a class [ inf , ]  for 
some symmetric ~ C ZZ(G/G ', U)? 
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5. An example 

In this section we present an application of  the machinery in Section 3 to calcu- 

late representative cocyclic matrices. Specifically, we consider development over finite 

metacyclic groups. This is the next obvious class o f  groups to study after abelian 

groups, which are dealt with in Section 4 of  [1]. Given the transparency of  calculating 

im inf, we restrict attention to transgression matrices. 

Suppose G is the (nonabelian) metacyclic group presented by the quotient F/R, 
where F is free on a,b and R is the normal closure in F o f  ar, b s and b- laba ,  where 

(r - 1)s - 1 mod r. Accordingly s must be even. We will identify the elements of  G 

with those o f  the transversal 

{a ibj l0 < i < r -  1,0 < j  < s - -  1} 

of  R in F. In this case H2(G) is cyclic o f  known order (see [6, p. 98, Theorem 2.11.3]). 

I f  r is odd then Hz(G) = 0, whereas H2(G) : 7/2 if  r is even. Consequently, from 

now on we assume r = 2m, m > 1 and s = 2n, n > 1. Furthermore, if U is finitely 

generated then by additivity o f  Horn it is sufficient to consider U = Z2 = { - 1 ,  1 ). 

The first step in calculating the image of  transgression in HZ(G, 772) is to determine 

a Schur complement for the choice of  F and R above. In this step, we follow the 

programme laid out on p. 132 of  [4] and write down a presentation of  R/[R ,F]  in 

terms of  generators o f  F/[R,  F], and from this read off the torsion subgroup R N F / [ R ,  F] 

of  the former group. 

Lemma 5.1. [a m, b] [R, F] = (a 2m ) -  1 ( b -  I aba)m [R, F]. 

Proof. An easy induction shows that 

[a m, b] [R, F] = a-(m+k)b- l am-k b (b -  I aba)k [R, F]  

for all k _> 0, from which the claim follows after setting k = m. [] 

Proposition 5.2. 

R/JR, F] = (b2"[R,F],b-laba[R,F]) ×([am, b][R,F]). 

The first  fac tor  o f  this direct product is a Schur complement S/[R, F]  and is a f ree  

abelian group o f  rank 2; the second fac tor  is R A F / [ R , F ]  ~ 772. 

Proof. Certainly [am,b] C R N F ~. We now show that [am, b][R,F] has trivial square. 

Modulo [R,F],  

[am, b] 2 =- a -m . b - l  amba -m . b- lamb = a -m . b- lamb . b - l  amba -m 

=_ a-rob -1 • a 2m • ba -m =_ 1, 

using the fact that a2m[R,F] and [b,a-m][R,F] lie in the central subgroup R/[R,F] of 
F/[R,F].  
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Since S/[R,F] has rank 2 and R A F ' / [ R , F ]  ~ 7/2, we have 

R/[R,F] ~- 77 x 7/ x Y-2. 

We must have [am,b] ~ [R,F]; otherwise, R/[R,F] would be generated by fewer than 

three elements by Lemma 5.1. By the same reasoning, {bZ"[R,F],b-laba[R,F]} is 

genuinely a complement of  {[am,b] [R,F]} in R~ [R,F]. [] 

Thus, this class o f  metacyclic groups is seen to satisfy the property (P) as discussed 

in Section 4. 

We are now in a position to calculate the image of  transgression *s, for the choice 

of  S made in Proposition 5.2. Note that 

R/S =({am, b]S) =- {aZms) 

and also that the following relations hold in F/S: 

(bS) 2" = S, (aS) bs = a IS. 

A transversal function a : FIR ~ F/S  is defined by a(aibJR) = aibJS for 0 < i < 

2m - l and 0 < j < 2n - 1, and gives rise to /~ E Z2(F/R,R/S)  as usual. We proceed 

to determine the entries of  a cocyclic matrix associated with 0 o p, where 0 is the 

nonidentity element o f  Hom(R/S, 7/2). 
Choose aibJR, akblR E F/R, 0 <_ i,k _< 2m - 1 and 0 < j , l  _< 2n - 1. Modulo both 

R and S, 

aib j . akb I ~ a i+( l)/kbJ+l" 

Therefore, 

[A(aibJR, a k bIR) = ai+(- I)1k-i+(- 1)iks, 

where overlining denotes reduction modulo 2m. That is, when j is even, 

1 
#(aibJR, akblR) = a2mS 

and when j is odd, 

1 i f i > _ k ,  
It(aibJR'akbtR) ~- aZms if i < k. 

We order the elements of  G by 

aib i < akb l ¢=~ j < l or both j = l  

i f O <  i + k  < _ 2 m - 1 ,  
otherwise, 

and i < k. 

(7) 

(8) 

With rows and columns indexed by the elements of  G under this ordering, a cocyclic 
matrix associated with q~ o/t  is a 2n x 2n block matrix of  the form 
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I 
X X . . . X )  
Y Y . . . Y  

Y Y . . . Y  

(9) 

where the blocks X and Y are 2m × 2m matrices with entries :t:l constructed according 

to the rules (7) and (8) respectively. In fact, it is readily seen that X is back negacyclic, 

and Y is that matrix obtained by writing the rows o f  X in reverse order. This completes 

our description of  a representative cocyclic matrix for rs(qS). A different choice of  Schur 

complement produces a matrix that may be visibly different, but whose coordinatewise 

(Hadamard)  product with (9) is certainly almost symmetric. 
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